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CHAPTER 3 ‘

The Overtone Series
and the Spectrum View

In the last chapter, we investigated a variety of sound properties using the waveform
view of sound. That representation is useful in many instances, but it falls short
with regard to timbre. The physical property related to timbre found in the waveform
view is the waveform itself. However, the small collection of standard waveforms
(sine, triangle, sawtooth, square, pulse) is of limited use when discussing real-world
timbres. A better representation of sound for investigating timbre is the spectrum view.
To understand the spectrum view it is useful first to consider the more familiar overtone

series.

OVERTONE SERIES

Any note whose timbre is more complex than a sine wave contains the frequency that
is heard as the pitch of the note—the fundamental frequency—plus some frequencies
above that that are heard not as pitch but as the “color” or timbre of the sound. The
overtone series represents the frequencies that are present in a single note, including
the fundamental, and is usually shown using traditional music notation (see Figure 3.1;
the fundamental is A).

This traditional notation is somewhat misleading, because it implies that every note
is really a chord and that all the frequencies are distinct pitches. There is really just one
pitch associated with an overtone series—the pitch related to the fundamental frequency.
However, there are some useful features about the frequencies in the overtone series
that can be seen with traditional notation. For example, for brass players, the fundamental
frequencies of the pitches available at each valve fingering or slide position are found
in the overtone series that is built on the lowest note at that fingering or position.

As implied by the name “overtone” series, the frequencies above the fundamental
are often referred to as overtones. However, the terms harmonics and partials are
also used. The distinction between these terms is subtle. The term overtone implies that
those frequencies are over the fundamental, so the overtone series would consist of the
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pitch: A2 A3 E4 A4 C#5 ES G5 A B5 C#6 D# E6 F#6 G6 G# A6
partial: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

frequency: 110 220 330 440 550 660 770 880 930 1100 1210 1320 1430 1540 1650 1760

omes: 11 i f i

Figure 3.1 The first 16 partials of the overtone series built on A2. (From Holmes, 2008)
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rms fundamental frequency plus the first overtone, the second overtone, etc. The term
rld harmonic is somewhat ambiguous. It could refer to the frequencies above the
EW. fundamental: the fundamental, the first harmonic, the second harmonic, etc. However,
me it could include the fundamental as the first harmonic, so the series would be: first
harmonic (fundamental), second harmonic, third harmonic, etc.
The term partial implies that all of the frequencies in a sound are all just parts of
the sound: first partial (fundamental), second partial, third partial, etc. This term has a
distinct advantage in that not every sound has frequencies that follow the overtone series,
so the term partial can also be applied to frequencies of those sounds as well, whereas
hat the terms overtone and harmonic only apply to sounds that follow the overtone series.
ies Sounds whose frequencies follow the overtone series are referred to as “harmonic,” and
he sounds whose frequencies do not follow the overtone series are referred to as
ng “inharmonic”—not “enharmonic” as in G§ and Ab, but “inharmonic” as in not harmonic.
1 Most of the sounds in the world are inharmonic, but many of the sounds that we are
concerned about in music, such as sounds made by many musical instruments, are
te harmonic. Inharmonic sounds will be discussed later in the chapter. This text will
ne primarily use the term partial to describe frequencies in a spectrum and number them
y. accordingly with the fundamental being the first partial (see Figure 3.1).
es To see what the relationships are between the frequencies in the overtone series,
al we need to find some point of reference in this notational representation. Since this
d overtone series is based on A, it includes the familiar tuning A as the fourth partial,
which has a frequency of 440 Hz. The only other fact we need to know is that octaves
al have a frequency relationship of 2 to 1. Armed with that information, we can see that
€ the second partial, which is an octave below the fourth partial, would have a frequency
it of 5 x 440 = 220. Similarly, the first partial is an octave below the second, giving it a

e frequency of 110, and the eighth partial is an octave above the fourth partial, giving it
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a frequency of 2 x 440 = 880. Table 3.1 shows the relationships derived so far (note
that for the pitch-octave notation here, middle C is C4).

From Table 3.1, you can see that each partial’s frequency is the partial number multiplied
by the fundamental frequency. Applying this principle to the other partials in this overtone
series, you get the frequencies given in Table 3.2. If the fundamental is more generically
given as some frequency f, then the partial frequencies are 2f, 3f, 4f, 5, 6f, "7f, 8f, and
SO on.

Table 3.2 shows an additional drawback to representing the overtones series in
traditional notation. The “G5” (remember it’s a frequency, not a note) in the table has
a frequency of 770 Hz. If you were to play G5 on a piano, the frequency would be
783.99 Hz (see Figure 2.4 on page 21). This needn’t be seen as too troubling a
discrepancy, because the G5 played on the piano is a note in its own right with its own
overtone series, and the “G5” that is part of the overtone series built on the fundamental
A2 is part of the timbre of that sound. Nevertheless, the frequency relationships found
in the overtone series have inspired many different approaches to tuning.

Table 3.1 Frequency relationships for overtone series on A

Table 3.2 Frequency relationships for overtone series on A

(incomplete) Partial # “Note” Frequency
Partial # “Note” Frequency 1 (fundamental) Aiz 110 -
1_(fundamental) A2— 110 é — A3 990
2 AR 20 3 B4 330
4 Ad o —
8 A 880 5 o5 550
6 E5 660 -
7 G5 770
8 s 830
9 BS 990
0 C6 1100 -
11 D6 1210 -
12 E6 1320
13 " H6 1430
14 G6 1540
15 D6 1650
16 A 1760
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10te Tuning and Temperament

To derive the relationships between partial number and frequency above, we started

z)hrfz with the fact that the ratio of two frequencies an octave apart is 2 to 1, often notated

ally as 2:1. If we continue to look at the overtone series in traditional notation, it is possible

and to derive ideal ratios for other intervals as well. A perfect fifth is present in the overtone )
series as the relationship of partial 3 to partial 2, giving a 3:2 ratio. A perfect fourth is

. in found between partial 4 and partial 3, giving a 4:3 ratio. A major third is found between

has partial 5 and partial 4, giving a 5:4 ratio, and a minor third is found between partial

| be number 6 and partial number 5, giving a 6:5 ratio. It is important to note that these

¢ a are ideal relationships. In practice they can present some difficulties.
One such difficulty is that it is possible to start at one note and get to another note
by different intervals and end up with contradictory frequencies. As a classic example

Trtli of this, if you start with one note and go up repeatedly by a perfect fifth (proceeding
through the circle of fifths) until you reach the beginning note several octaves higher,
and then do the same by octaves, you reach different frequencies. Starting on C1, the
lowest C on the piano (with C4 being middle C), you can get back to the pitch C by

|—A_ going up twelve fifths, and to that same C by going up seven octaves. This is C8, the

-— highest C on the piano.
Using the interval ratio derived from the overtone series for a fifth of 3:2, the

frequency for each successive fifth is generated by multiplying the frequency of the
previous note by 3/2. The results of this are shown in Table 3.3, where the frequency
_ of C1 is given as f. Using the interval ratios for an octave of 2:1, multiplying by 2
— generates the frequency for each successive octave. The results of this are shown in

S Table 3.4.

You might expect, because both series of intervals arrive on the same note, that
(3/2)?f and 2’f would be the same. However:

_ (3/2)12f = 129.75f
and

27f = 128f

— Table 3.3 Going up from G1 to C8 by fifths
— c1 a1 D2 A2 E3 B3 Fs4  Ce5  Gi5 D6 As6 F7 c8
— f 3/2f  (3/22F (3/2%f (3/2*F (3/2)5F (3/28F (3/2)'f (3/2°F (3/2)°F (3/2)'fF (3/2)""f (3/2)*f

Table 3.4 Going up from C1 to C8 by octaves
C1 c2 c3 c4 c5 c6 c7 c8

f 2f 22f 2%f 24f 25f 26f 2'f
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The frequency of C1 is 32.7, so these two formulas give the frequency of C8 as:
129.75 x 32.70 = 4,243.24 Hz (going up by fifths)

and

+

128 x 32.70 = 4,186.01 Hz (going up by octaves)

If you look at Figure 2.4 in the previous chapter (page 21), you can see that going
up by octaves gives you the frequency for C8 on the piano. Going up by fifths causes
you to “overshoot” that frequency. The difference between going up by fifths and going
up by octaves generates what’s known as the Pythagorean comma.

There are a number of other discrepancies to be found by going from one note to
another by different intervals, and overtone series built on different fundamentals can
generate different frequencies for what is nominally the same note. What these and
other discrepancies point to is that the ideal interval relationships derived from the
overtone series by themselves don’t form the basis for our familiar musical system.
However, in isolation, intervals formed from the ideal ratios are said to sound more
pure than any of the compromise tuning systems that have been developed. A variety
of such compromise systems have been proposed and used over the centuries, including
Pythagorean tuning, meantone intonation, just intonation, and equal temperament.

In equal temperament, the ratio between every semitone is exactly the same, so
each interval, regardless of the starting note, is also exactly the same. Essentially, all
intervals, with the exception of the octave, are slightly “wrong” in equal temperament,
but it allows music using this tuning system to modulate to any key and still have intervals
the same size as the original key. Johann Sebastian Bach’s famous The Well-Tempered
Clavier, which includes preludes and fugues in all 24 major and minor keys, shows the
advantage of such a tuning system, though well-tempered and equal-tempered tunings
are slightly different. Table 3.5 shows some ideal interval ratios and the approximate
equal-tempered ratios.

Table 3.5 Equal-tempered and ideal interval ratios

Interval Ideal ratio Equal-tempered ratio Equal-tempered “error”
Major second 9:8 =1.125:1 1.122:1 Flat

Minor third 6:5=1.2:1 1.189:1 Flat

Major third 5:4 = 1.25:1 1.26:1 Sharp

Fourth 4:3 = 1.333:1 13351 Slightly sharp

Fifth 32 =151 14081 Slightly flat

Minor sixth 8:5 = 1.6:1 1,587:1 Flat

Major sixth 53=16671 168111 Sharp

Major seventh o _1_5:8 =1.875:1 1.888:1 Shérp_ B

Octave 2:1 2:1 None
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The last column in Table 3.5 shows the qualitative error for each interval in equal-
tempered tuning relative to the ideal ratios. In performance, many performers and
conductors will adjust their tuning of chords to partially compensate for this error.
For example, a performer holding the major third of a chord will often play it slightly
fat relative to equal-tempered tuning to more closely approximate the pure intervals
generated by the ideal ratios.

This brief discussion has really only scratched the surface of tuning issues, both

oing
uses historical and contemporary. There are many books and websites devoted to various
oing tuning systems, particularly just intonation, and a number of contemporary composers
have utilized such systems in their works. In addition, many hardware and software
e to synthesizers contain resources for variable tuning.
can
and '
the THE SPECTRUM
‘em.
10re The timbre of a note is determined in part by which frequencies are present in a sound
iety and how much of them are present (their relative amplitudes). The notation representation
ling of the overtone series has no way to show amplitude information, and shows frequency
ent. information inadequately given that the partial frequencies often don’t match the equal-
, SO tempered pitches shown. To discuss timbre more generally, it is necessary to abandon
, all traditional music notation altogether and use the spectrum view of sound.
ent, The spectrum view represents sound as a graph of frequency vs. amplitude, as opposed
vals to the waveform view that is a graph of time vs. amplitude. The spectrum view for the
ered overtone series starting on A2 is given in Figure 3.2. The amplitudes of the frequency
the components are from a spectrum analysis of a trombone note.
ings
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o 110 220 330 440 550 660 770 880 990 1,100 1,210 1,320 1,430 1,540 1,650 1,760 --- freq.
T f 2f 3f 4f 5f 6f 1f 8f 9f 10f 11f 12f 13f 14f 15f 16f -

Figure 3.2 The spectrum view of sound with frequency on the x-axis and amplitude on the y-axis. The fundamental is
— A2 (110 Hz) and 16 total partials are shown, with the ellipses indicating that the partials continue. The relative amplitudes
of the partials are based on a recording of a trombone. The frequency data is the same as in Figure 3.1 and Table 3.2.
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There exist 2 number of standalone programs and plug-ins for DAW/sequencers that
perform frequency analysis of live audio or of an audio file. The amplitude axis of this
view differs from the amplitude axis of the waveform view in that the amplitudes in the
spectrum view show the amplitude of each individual partial, whereas the ampli-
tude in the waveform view is the overall amplitude of the sound. The overall amplitude
in the spectrum view comes from a complex interaction between the amplitudes of each
individual partial—it’s not as simple as just adding them up.

It’s also important to note that, in this spectrum view, there is no time axis as there
is in the waveform view. To see how a spectrum changes over the course of a note or
sound event—and it can change quite a bit—you would have to look at successive
spectrum views that would provide a time-lapse view of the spectrum. There are variations
on the spectrum view that allow three dimensions to be shown at once: frequency,
amplitude, and time. One is the spectrogram view, which gives time vs. frequency
and then shows the amplitude by the intensity of the color (see Figure 3.3).

Another of these spectrum view variations is the waterfall spectrum, which typically
shows frequency vs. amplitude with time coming out of or into the screen in a simulated
3-D effect. There is a downward visual component to this time axis that gives it the
name “‘waterfall.”

Spectra of Basic Waveforms and Fourier’s Theorem

In the previous chapter, you were introduced to a collection of basic waveforms that are
largely derived from analog synthesis. To understand these basic waveforms in some more
detail, we can look at their spectra. (See the book’s website for audio of these examples.)

The sine wave is the simplest possible waveform, having only one partial: the
fundamental (see Figure 3.4a). By itself, the sine wave has a pure, pale timbre that can
be spooky in the right situation. The triangle wave contains only the odd partials
(1, 3, 5, 7, etc.) but at very low amplitudes after the fundamental, so it is a little bit
brighter than the sine wave and more suitable as the basis of a synthetic timbre (see Figure
3.4b). The amplitudes of the partials in a triangle wave are inversely proportional to the
square of the partial number, so the third partial has a relative amplitude of 1/9, the fifth
partial an amplitude of 1/25, and so on.

The square wave also contains only the odd partials, but in greater proportion than
the triangle wave, so it sounds brighter than the triangle wave (see Figure 3.4c). The
amplitudes of the partials in a square wave are inversely proportional to the partial number,
so the third partial has an amplitude of 1/3, the fifth partial an amplitude of 1/5, and so
on. In the octave below middle C it can sound quite a bit like a clarinet, which also has
very little energy in the even partials in that register. A guitar can also produce a tone
like this by plucking an open string at the twelfth fret. Timbres built from a square wave
can be quite penetrating.

The sawtooth wave contains both even and odd partials (see Figure 3.4d). The
amplitudes of the partials in a sawtooth wave are inversely proportional to the partial
number, so the second partial has an amplitude of 1/2, the third partial an amplitude of
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bit Figure 3.3 Three different views of a voice saying “oo-ah-ee-oh” on the same pitch. Upper left: waveform view frozen
rure on “oh.” Upper right: spectrum view frozen on “oh.” Bottom: spectrogram view (also called the sonogram view) with
the time shown horizontally, frequency shown vertically, and amplitude shown by the intensity of the line. All four vowels
ifth are shown left to right. The different amplitudes of the partials for each vowel are shown clearly.
han 1/3, the fourth an amplitude of 1/4, and so on. As a result, the sawtooth wave is bright
Che and nasal, which allows it to penetrate well when combined with other timbres. The
ser, sawtooth is one of the most common waveforms used for electronic timbres, particularly
I'so those meant to mimic analog synthesizer timbres.
has Since the spectrum of a sine wave has only one partial, its fundamental, it is the most
me basic of the waveforms. In fact, each partial in the spectra of the other basic waveforms
e can be thought of as a separate sine wave. This implies that each of these spectra can be
thought of as a sum of sine waves whose frequencies match the partial frequencies and
'he whose amplitudes match the partial amplitudes. Figure 3.5 shows several sine waves adding
tial together to form the beginnings of a sawtooth waveform. Many more partials would

of
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need to be added to create the sawtooth’s characteristic shape.
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Figure 3.4 Basic waveforms and their Figure 3.5 Waveform and spectrum view
spectra: (a) sine wave, (b) triangle wave, of three sine waves adding together to
(c) square wave, and (d) sawtooth wave. form a more complex waveform. If enough

partials are added like this, a sawtooth
wave will be formed.

The idea that a complex spectrum can be expressed as a sum of sine waves of various
frequencies and amplitudes lies at the heart of Fourier’s theorem. Fourier’s theorem
says that any periodic waveform can be expressed as a sum of sine waves. Periodic
waveforms follow the overtone series, which means that most “musical” sounds made
by winds, brass, strings, pianos, voices, and some percussion instruments all have spectra
that can be thought of as sums of sine waves. Fourier’s theorem is not only useful in the
analysis of instrument spectra, but can also be used to synthesize new sounds through a
technique known as additive synthesis, which is also referred to as Fourier synthesis. This
method of synthesis along with a variety of others will be discussed later in the text in
the chapter on synthesis methods.

Harmonic and Inharmonic Spectra

Thus far, we’ve been assuming that all sounds have partials that follow the overtone
series. The spectra for those sounds are termed harmonic spectra. Despite the fact
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that sounds with harmonic spectra are only a small subset of all the possible sounds, it
just so happens that many of the musical sounds we care about are part of this subset,
including those made by brass, woodwinds, strings, pianos, voices, and certain percussion
instruments.

The rest of the sounds in the world have partials that do not follow the overtone
series and thus have inharmonic spectra. These sounds include everyday sounds such
as ocean waves, car engines, and jackhammers, but there are also a number of musical
instruments that have inharmonic spectra, such as bells and some kinds of percussion.

It is worth noting that even sounds whose spectra are essentially harmonic have
— partials that deviate from the precise ratios. The deviations in the piano spectrum that
result in “stretched” octaves are perhaps the most famous example of this. In general
real pipes, strings, and reeds have subtle physical characteristics that cause the resultant
spectrum to deviate slightly from the pure overtone series. This deviation is sometimes
termed inharmonicity. Nevertheless, they are still heard as being largely harmonic and
belong in a different category from distinctly inharmonic sounds.

Figure 3.6 shows the spectrum of a bell sound. Notice that, while there are distinct
partials, they do not form an overtone series of f, 2f, 3f, 4f, 5f, and so on. As a result,
this spectrum is deemed inharmonic.
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Noise Spectra

If— Noise does not have a harmonic spectrum, nor does it have distinct partials. Instead,
the spectra of various kinds of noise are better conceived as a distribution of energy
w among bands of frequencies. White noise, for example, has a spectrum whose energy

is distributed evenly among all the frequencies. This can be described as equal energy in
1gh equal frequency bands, so white noise will have the same amount of energy between 100
Hz and 200 Hz as between 200 Hz and 300 Hz, or 1,000 Hz and 1,100 Hz.

ous
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freq. 2,073 4,631 1,729 9,989 11,257 12,943 15,237 16,846 19,481
f 2.23f 3.73f 481f 543f 6.24f 7.35f 8.12f 9.40f

ne Figure 3.6 Inharmonic spectrum of a small bell. Note that the partials are not whole number multiples
act of the fundamental. Dashed lines indicate the positions of whole number multiples of the fundamental.
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Figure 3.7
b) .
Two noise
dB spectra shown as

distributions of
energy across the
audible frequency
range: (d) white

noise, and (b)

frequency frequency ok noise.

Pink noise, on the other hand, has equal energy in each octave, so there will be the
same amount of energy between 100 Hz and 200 Hz as between 200 Hz and 400 Hz,
or between 1,000 Hz and 2,000 Hz. Since we perceive these frequency bands as being
of equal musical size (octaves), pink noise seems more evenly distributed and somewhat
more pleasant to our ears. We perceive white noise as being louder at higher frequencies
because the absolute size in hertz of musical intervals (thirds, fifths, octaves, etc.) gets
larger as they go up in frequency. As a result, the white noise distribution contains more
energy in higher octaves than in lower octaves. Figure 3.7 shows the frequency
distributions of white noise (3.7a) and pink noise (3.7b).

MODIFYING TIMBRE

At first, the spectrum view may seem a bit esoteric, particularly because the waveform
view of sound is so pervasive in audio recording programs. However, we actually have
quite a bit of experience in manipulating timbre through the tone or equalization
(EQ) controls of our home and car stereos.

Often stereos will have bass and treble controls, or bass, midrange, and treble controls.
For each of these frequency bands, you can cut them (reduce the amplitude), leave
them alone (flat), or boost them (increase the amplitude). Definitions of these ranges
vary widely from device to device, but bass is roughly 20 to 200 Hz, midrange is roughly
200 to 5,000 Hz, and treble range is roughly 5,000 to 20,000 Hz. Many EQs have more
than three bands and will often split the midrange up into two or three parts. Many
manufacturers have their own definitions of these frequency bands.

Many stereos, other sound playback devices, and pieces of sound software have
graphic equalizers that can adjust more than just two or three frequency bands. In
consumer products graphic equalizers usually have presets that allow you to choose an
appropriate setting for boosting and cutting the various frequency bands based on the
type of music you're listening to. Figure 3.8 shows various settings for the graphic
EQ in Apple’s iTunes software. The “Hip-Hop” setting (3.8a) fittingly emphasizes the
bass while the “Spoken Word” setting (3.8b) emphasizes the upper midrange, which
improves the intelligibility of speech, particularly in a noisy setting.

More detailed discussions of EQ and timbre modification in general will be carried
out later in the text in Chapters 4, 11, and 12.




wn as
s of
ss the
uency
‘hite

ve the
0 Hz,
being
‘what
‘ncies
) gets
more
iency

form
have
tion

rols.
eave
nges
ghly
10re
lany

1ave
. In
tan
the
vhic
the
LiCh

ied

THE OVERTONE SERIES AND THE SPECTRUM VIEW 47

Equalizer b eo
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Figure 3.8 (a) The Hip-Hop setting of the graphic equalizer from Apple’s iTunes; and (b) the Spoken Word setting of
the graphic equalizer from Apple’s iTunes. (Screenshots reprinted with permission from Apple Inc.)

REVISED SOUND PROPERTY SUMMARY

Table 3.6 is a slight revision of Table 2.6 from the previous chapter, and reflects the
information presented in this chapter.

Table 3.6 Revised perceptual

and physical properties of sound

Eceptua/ properties
Pitch

Loudness

Timbre
Articulation
Rhythm

Physical properties
Fundamental frequency

Amphtude
Waveform and spectrum
Amplitude envelope

Transient patterns

overtone series 36
fundamental frequency 36
overtones 36
harmonics 36

partials 36
Pythagorean comma 40
equal temperament 40
spectrum view 41
spectrogram view 42
waterfall spectrum 42
sine wave 42

triangle wave 42

square wave 42
sawtooth wave 42
Fourier’s theorem 44
harmonic spectra 44
inharmonic spectra 45
inharmonicity 45
white noise 45

pink noise 46
equalization (EQ) 46
cut 46

boost 46

graphic equalizers 46
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